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Abstract. Propagation and tunneling of light through photonic barriers formed by thin dielectric films
with continuous curvilinear distributions of dielectric susceptibility across the film, are considered. Giant
heterogeneity-induced dispersion of these films, both convex and concave, and its influence on their re-
flectivity and transmittivity are visualized by means of exact analytical solutions of Maxwell equations.
Depending on the cut-off frequency of the film, governed by the spatial profile of its refractive index,
propagation or tunneling of light through such barriers are examined. Subject to the shape of refractive
index profile the group velocities of EM waves in these films are shown to be either increased or deccreased
as compared with the homogeneous layers; however, these velocities for both propagation and tunneling
regimes remain subluminal. The decisive influence of gradient and curvature of photonic barriers on the
efficiency of tunneling is examined by means of generalized Fresnel formulae. Saturation of the phase of
the wave tunneling through a stack of such films (Hartman effect), is demonstrated. The evanescent modes
in lossy barriers and violation of Hartman effect in this case is discussed.

PACS. 42.25.Bs Wave propagation, transmission and absorption

1 Introduction

This paper is devoted to the traveling and tunneling
regimes of propagation of electromagnetic waves through
thin dielectric layers with continuous spatial distributions
of dielectric susceptibility in the direction of propaga-
tion ε(z). This problem has a long history, starting from
the first analytic results, obtained by Rayleigh for waves
whose velocity inside the medium depends linearly upon
the coordinate [1]. Later the linear profile for ε(z) [2]
as well as an exponential and more general Epstein pro-
files [3] were used for the analysis of radio propagation in
the ionosphere. Some more complicated distributions were
modeled by piece-wise profiles of ε(z) [4], described by a
WKB approximation [5] or treated numerically [6]. These
researches focused on the propagation of EM waves in het-
erogeneous media with positive ε, although the tunneling
phenomena, arising when ε < 0, were touched sometimes
too, e.g., in the case of radiowaves percolation nearby the
ionospheric maxima [7].

The advent of lasers attracted attention upon light
tunneling in a series of optoelectronics problems, such as,
e.g., the evanescent modes in dielectric waveguides [8], sur-
face waves on microspheres [9], Goos–Hanchen effect for
optical coatings [10]. A new burst of interest into these
phenomena was stimulated by the intriguing perspective
of superluminal light propagation through opaque barri-
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ers [11]. The experiments in microwave range with “under-
sized” waveguide [12] and bi-prism device [13] as well as
the analysis of spatial displacement of the peak of a tun-
neling pulse [14] and the direct measurement of photons’
tunneling time [15,16] were considered by some authors
in favor of the concept of superluminal phase time for the
tunneling EM waves [17]. However, this concept aroused
controversial viewpoints [18,19].

The theoretical background of the aforesaid researches
is based on the rectangular model of opaque barrier, pi-
oneered by Gamov for the theory of α-decay as long ago
as in 1928 [20]. Another model, combining the well-known
rectangular and linear barriers (the “trapezoidal” barrier)
was developed in [21]. However, these models, built from
the broken straight lines, fail to interpret the salient fea-
tures of photonic barriers formed by continuous smooth
variations of material’s transparency.

On the contrary, this paper is intended to bridge the
gap between the traveling and evanescent regimes of wave
propagation through concave and convex photonic bar-
riers, formed by continuously distributed heterogeneities
of ε(z). These regimes are shown to be determined by
strong heterogeneity-induced dispersion (HID), dependent
upon the finite spatial scales of heterogeneity profile. Such
non-local dispersive effects are visualized by means of ex-
act analytical solutions of Maxwell equations for curvi-
linear photonic barriers, as we showed in [22], and will
be recalled briefly for completeness hereunder (Sect. 2).
These solutions, obtained without any suppositions about
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smallness or slowness of variations of fields or media, vi-
sualize the decisive influence of gradient and curvature of
photonic barrier on it is reflectivity and transmittivity.
The group velocities of energy transfer through heteroge-
neous films vg in traveling (Sect. 3) and tunneling (Sect. 4)
regimes, while remaining subluminal, are shown to be ei-
ther accelerated or delayed as compared with vg for the
homogeneous film.

The tunneling of light wave through an arbitrary
amount of thin dielectric nanolayers with concave pro-
file ε(z) is considered in Section 5. The phase shift of the
evanescent wave is shown to tend to some constant limit
after passage through a stack containing a finite amount of
layers. A superluminal phase time, provided by this sat-
uration of phase shift, is found. In Section 6, we study
the case of lossy films and show that they present specific
features.

2 Heterogeneity-induced dispersion
of thin dielectric films

We recall here some results exposed in a previous pa-
per [22,23] on the antireflection properties of such inho-
mogeneous films. To visualize the effects of HID let us
consider a simple problem of normal incidence of linearly
polarized EM wave with components Ex and Hy, prop-
agating in the z-direction, incidenting on the interface
z = 0 of a heterogeneous, non-magnetic and lossless mate-
rial, described by some continuous distribution of dielec-
tric susceptibility in the transparent region ε(z) > 0, z ≥ 0
in a form

ε(z) = n2
0U

2(z), U |z=0 = 1. (1)

Here n0 is the value of refractive index of material on the
boundary z = 0. Note that here the field is propagating
along the index gradient, a situation that should not be
confused with that encountered in gadient index fibers,
where the field travels perpendicularly to the index gradi-
ent. Expressing the field components Ex and Hy through
the vector-potential A (Ax = ψ, Ay = Az = 0), one can
reduce the system of Maxwell equations, related to this
geometry, to one equation governing the function ψ,

∂2ψ

∂z2
− n2

0U
2(z)
c2

∂2ψ

∂t2
= 0. (2)

We will examine the solution of (2) for the profiles U(z)

U(z) =
(

1 +
s1z

L1
+
s2z

2

L2
2

)−1

;

s1 = 0, ±1; s2 = 0, ±1 (3)

containing two spatial scales L1 and L2. In the case of
opposite signs of s1 and s2 the profile (3) has either a
maximum (s1 = −1, s2 = +1) or a minimum (s1 =+1,
s2 = −1) with a value Um

Um =
(
1 + s1y

2
)−1

, y = L2/2L1. (4)

The scales L1 and L2 are linked in these cases with
the thickness d and the values of Um (4): L1 = d/4y2,
L2 = d/2y. The solution of the heterogeneous wave equa-
tion (2) with the profile U (3) can be written as a spatially
non-sinusoidal wave [22]

ψ = [U(z)]−1/2 exp[i(qη − ωt)]; η =

z∫
0

U(z1)dz1 (5)

q =
ωn0

c
N ; N2 = 1 − Ω2

ω2
. (6)

The characteristic frequencies in (6) are different for con-
cave (Ω1) and convex (Ω2) profiles:

Ω2
1 =

c2
(
1 + y2

)
n2

0L
2
2

; Ω2
2 =

c2
(
y2 − 1

)
n2

0L
2
2

. (7)

We note that η is proportional to the optical phase path at
the position z and that the quantity n0N has the meaning
of a refractive index. It is remarkable that N , as well as
the characteristic frequencies Ω1 and Ω2 are determined
by the spatial scales L1 and L2 only, and not by the char-
acteristic frequencies of the material itself.

The salient features of this heterogeneity – induced
dispersion (HID) are:

1. Subject to the interplay of scales L1 and L2 for con-
cave or convex profiles U(z), parameters Ω2 in (6) can
have positive, negative or zero values. Herein, in a case
Ω2 > 0, the factor N resembles the refractive index for
a plasma or waveguide with cut-off frequency Ω, de-
pendent upon the profile ε(z).
The values of Ω for a nanolayer with thickness d
of about 100 nm, refractive index n0 ≈ 1.8 and
modulation depth of about 25% may be as high as
2.2× 1015 rad s−1, which relates to a free space wave-
length in a near IR range.

2. The wave with frequency less than the cut-off fre-
quency for the concave photonic barrier, is passing
through this barrier in a tunneling regime.

3. The variations of wave velocity inside the medium, pro-
duced by HID, can exceed the analogous effects of ma-
terial dispersion by several orders of magnitude.

Electric and magnetic components of the EM field can
be found by means of the vector-potential component
Ax = ψ

Ex =
iωC

c
ψ (8)

Hy =
iωn0CU (z)

c

[
1 +

iUz

2qU2

]
ψ; Uz =

dU

dz
(9)

where C is an amplitude factor. The solutions (8, 9) are
valid for arbitrary wavelengths and spatial scales of het-
erogeneity. In the limit L2 → 0 the profile (3) is reduced to
the well-known Rayleigh profile which is, thus, a limiting
case of the profiles under discussion. Moreover, when both
scales L1 and L2 are increasing and, thus, the heterogene-
ity is vanishing (Ω2→ 0, N → 1), solution (7) is reduced
in this limit to a WKB approximation, where these HID
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effects are dropped. In the particular case, where the het-
erogeneity scales L1,2 are finite, but Ω2 = 0, this ap-
proach reveals the peculiar U(z) profiles, e.g., U(z) =
(1 + z/L)−2, for which the WKB solutions remain ex-
act [24].

3 Group velocities of traveling EM waves
in concave and convex photonic barriers

The spatial waveforms of the EM field inside the heteroge-
neous medium are non-sinusoidal and this field is formed
due to interference of forward and backward waves; so, the
group velocities vg of these waveforms have to be found
by means of energy flux (Pointing vector) P and energy
density W [7]:

vg =
P
W

; P =
c

4π
Re [E ∧ H∗] (10)

W =
1
8π

(
ε |E|2 + |H|2

)
. (11)

To stress out the physical phenomena initiated by the het-
erogeneity, we will consider a film in air, without substrate.
The spatial structure of the EM field inside the barrier
is formed by the interference of forward wave, passing
through the plane z = 0, and backward one, reflected from
the plane z = d. Using formulae (8, 9) one can present
these waves in a form

Ex =
iωC

c

(
eiqη +Qe−iqη

) 1√
U

Hy = iqC
√
U

[
iUz

2qU2

(
eiqη +Qe−iqη

)
+ eiqη −Qe−iqη

]

(12)

where

Uz = −2U2

qL2

(
ys1 +

zs2
L2

)
. (13)

For simplicity the time-dependent factor exp(-iωt) is omit-
ted here and below. The dimensionless parameter Q de-
scribes the reflectivity of the far boundary z = d. Intro-
ducing the reflection coefficient of the film R, we can write
the continuity conditions on the plane z = 0:

Ei (1 +R) =
iωC

c
(1 +Q) (14)

Ei (1 −R) =
iωn0NC

c

[
− is1

2qL1
(1 +Q) + 1 −Q

]
. (15)

Here Ei is the electric component of the incidenting wave,
so that the amplitude C writes:

C =
−icEi (1 +R)

1 +Q
(16)

and parameter Q can be found from the continuity condi-
tions on the interface z = d:

Q =
− exp (2iqη0)

(
1 − i

2s1γ − n0N
)

1 − i
2s1γ + n0N

γ = c/ωL1. (17)

The value η0 = η (d) will be obtained from (5). The field
components Ex (12) and Hy (13) can be rewritten using
equations (16) and (17)

Ex =
Ei (1 +R)
(1 +Q)

√
U

(
eiqη +Qe−iqη

)
(18)

Hy =
Ei (1 +R)n0N

1 +Q

√
U

{
eiqη

[
1 − i

qL2

(
s1y +

s2z

L2

)]

−Qe−iqη

[
1 +

i

qL2

(
s1y +

s2z

L2

)]}
. (19)

Substitution of (18, 19) into (10) brings the expression for
the EM energy flow Pz

Pz =
c

π

|M |2 (n0N)2 |Ei|2
|∆|2

|M |2 =
(1 +R) (1 + R∗)
(1 +Q) (1 +Q∗)

; ∆ = 1 + n0N − is1γ

2
. (20)

We thus note that the energy flow Pz is coordinate-
independent, while on the contrary, the EM energy den-
sity W proves to be coordinate-dependent: substitution
of (18, 19) into (11) permits one to describe this depen-
dence by means of a dimensionless function θ+:

W =
|M |2 (n0N)2

4π |∆|2 Uθ+ (21)

with

see equation (22) below.

Here the subscripts “+” in θ+ andN+ indicate that we are
considering the case N2 > 0. Finally, making use of (10),
we will find the group velocity vg inside the curvilinear
barrier

vg = 4c/Uθ+. (23)

θ+ = n2
0 +

1 + γ2
/
4

N2
+

+

[
1 +

γ2

4
+ n2

0N
2
+

] [
1 +

1

(qL2)
2

(
y − z

L2

)2
]

+ ...

+ cos [2q (η0 − η)]

{
n2

0 − 1 + γ2
/
4

N2
+

+

[
1 +

γ2

4
− n2

0N
2
+

] [
1 − 1

(qL2)
2

(
y − z

L2

)2
]

+
2γn0N+

qL2

(
y − z

L2

)}
+ ...

+ s1 sin [2q (η0 − η)]

{
−γn0

N+
− 2

qL2

[
1 +

γ2

4
− n2

0N
2
+

](
y − z

L2

)
+ γn0N+

[
1 − 1

(qL2)
2

(
y − z

L2

)2
]}

(22)
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θ− = n2
0 − 1 + γ2/4

N2
−

+

[
1 +

γ2

4
− n2

0N
2
−

] [
1 − 1

(pL2)
2

(
y − z

L2

)2
]

+ ...

+ ch [2p (η0 − η)]

{
n2

0 +
1 + γ2/4

N2
−

+

[
1 +

γ2

4
+ n2

0N
2
−

] [
1 +

1

(pL2)
2

(
y − z

L2

)2
]

+
2γn0N−

pL2

(
y − z

L2

)}
− ...

+ sh [2p (η0 − η)]

{
γn0

N−
+

2

pL2

[
1 +

γ2

4
+ n2

0N
2
−

](
y − z

L2

)
+ γn0N−

[
1 +

1

(pL2)
2

(
y − z

L2

)2
]}

(29)

θ+ |N=0 = θ−|N=0 = 2

[
1 + n2

0 +
n2

0

1 + y2

(
2y − z

L2

)2

− 2 (η0 − η)

L2

{
n2

0

1 + y2

[
1 + y2 +

(
y − z

L2

)2
]

+

(
y − z

L2

)(
1 +

y2

1 + y2

)}
+... +

(η0 − η)2

L2
2

{
1 + y2 +

(
y − z

L2

)2 (
1 +

γ2

4

)}]
(30)

It is worth stressing out that this expression for the group
velocity is valid for both convex and concave profiles of
ε(z) with N2 > 0.

4 Group velocity of evanescent waves
in concave barriers

If the wave frequency is less than the cut-off frequency,
the radiation flux will be transmitted through the film
in the tunneling regime. This situation can arise in a
transparent film due to concave profile U(z) (Eq. (3))
(s1 = +1, s2 = −1). Introducing the notations

p =
ω

c
n0N−; N− =

√
u2 − 1; u =

Ω

ω
> 1 (24)

and proceeding as above, one can write the field compo-
nents for the evanescent waves

Ex =
Ei (1 +R)
(1 +Q)

√
U

(
e−pη +Qepη

)
(25)

Hy = i
Ei (1 +R)n0N−

1 +Q

√
U

{
e−pη

[
1 − 1

pL2

(
y − z

L2

)]

−Qepη

[
1 +

1
pL2

(
y − z

L2

)]}
. (26)

Parameter Q, connected with the “reflection” of the
evanescent wave on the far side of film, is

Q =
exp (−2pη0)

(
n0N− + γ

2 + i
)

n0N− − γ
2 − i

. (27)

It is remarkable, that the presentation of EM field, tun-
neling through the heterogeneous film, can be found from
the relevant formulae for the traveling wave through the
following replacements

q → ip; N+ → iN−
cos [2q (η0 − η)] → ch [2p (η0 − η)] ;
sin [2q (η0 − η)] → ish [2p (η0 − η)] . (28)

Thus equations (12), (13) and (17) are mapped to equa-
tions (25), (26) and (27) respectively. Using this replace-
ment, one can write energy flux Pz and density W in the
forms, similar to (20, 21), with the function

see equation (29) above.

Substitution of θ− (29) instead of θ+ into (23) yields the
group velocity vg of the evanescent wave. Transition from
the traveling modes (ω ≥ Ω, N2 ≥ 0) to the evanescent
ones (ω ≤ Ω, N2 ≤ 0) is continuous in N = 0, both
functions θ− and θ+ having in this point identical values

see equation (30) above.

Moreover, the transition between the modes in concave
and convex barriers in (22) is performed by changing the
signs of s1 and s2 to the opposite ones. Finally, the tran-
sition to the homogeneous film, arising in a limit Ω = 0,
N = 1, U = 1, η0 = d, in both cases N2 > 0 and N2 < 0,
brings the value of group velocity in a homogeneous film
vg = vg0

vg0 =
2c

1 + n2
0

. (31)

Thus, the expressions obtained for θ± provide the general
formula for 3 types of photonic barriers: convex (N2 > 0),
concave (N2 > 0) and concave for evanescent waves
(N2 < 0). To calculate the values of vg, one has to define
the values of variables η (5). Substitution of (3) into (5)
yields for the concave profile

η (z) =
L2

2
√

1 + y2
ln
(
y+
y−

y− + z/L2

y+ − z/L2

)
;

y± =
√

1 + y2 ± y

η0 = η (d) =
L2√
1 + y2

ln
(
y+
y−

)
. (32)
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Likewise, one finds the variable η for the convex profile:

η (z) =
L2√
1 − y2

arctg


(z

/
L2)
√

1 − y2

1 − yz/L2


 ; y2 < 1

η0 = η (d) =
L2√
1 − y2

arctg

(
2y
√

1 − y2

1 − 2y2

)
. (33)

Using (32) and (33) we will find the group velocities.
To visualize the effects of heterogeneity, it is conve-
nient to present the values of vg, normalized by means
of its values in homogeneous films (31) V = vg/vg0.
These group velocities are presented in Figure 1 for three
types of barriers with thickness d and refractive index
n0 = 1.8 (at a wavelength λ = 800 nm): transparent-
convex (d = 100 nm, Um = 1.25), transparent-
concave (d = 100 nm, Um = 0.75) and tunneling-concave
(d = 80 nm, Um = 0.75) barriers for the different posi-
tions inside the film. Note that the value V = 1 at the
far side of the layers arise for the symmetrical profiles
U(0) = U(d) = 1; this would not be the case for asym-
metrical profile, e.g., U(0) = 1, U(d) = Um. Thus one
can see that these photonic barriers form highly dispersive
films; the velocity of energy transfer through such barriers
can be increased or decreased essentially due to the ε(z)
profile inside the barrier. One notes a remarkable similar-
ity between the general behaviour of the group velocities
for the two concave profiles, despite the fact that one of
them (Fig. 1b) is transparent (N2 > 0) while the other
(Fig. 1c) is opaque (N2 < 0). They both differ totally
from that observed in the convex case (Fig. 1a).

5 Phase shift of waves tunneling
through a concave dielectric barrier
(Hartman effect)

The group delay tg for waves, traversing the film, can be
found directly from (23)

tg =
1
4c

d∫
0

Uθdz. (34)

The values of tg for typical parameters of heterogeneous
films discussed above do not exceed the “causality limit”
t0 = d/c: e.g., the ratio tg/t0 for the evanescent wave with
λ = 800 nm, tunneling through concave barrier, formed
by the film with thickness d = 80 nm and Um = 0.75,
found from (34) is 0.84. No phase velocity is known to
be attributed to these waves. However, there is a phase
shift accumulated by these waves due to tunneling. Side
by side with delay time tg (34) one can define the “phase
time” tp, connected with the phase shift ϕ− of the complex
transmission function T− (such that Et = EiT−) for the
evanescent waves (25, 26)

tp =
∂ϕ−
∂ω

. (35)

Fig. 1. Group velocity as a function of z in three different
symmetric barriers, n0 = 1.8: (a) convex profile, d = 100 nm,
Um = 1.25; (b) concave profile, d = 100 nm, Um = 0.75; (c)
concave profile, d = 80 nm, Um = 0.75.

This time tp is widely discussed in the literature devoted
to superluminal propagation of evanescent waves through
thick opaque barriers (kd � 1) [11–15,17–19], where the
case d/tp > c was analysed, and interpreted as “superlu-
minal” propagation.

Unlike the traditional schemes for observation of op-
tical tunneling, based on the inclined incidence, such
as, e.g., the frustrated total internal reflection or Goos-
Hanchen shift [17], we will examine the aforesaid phase
effect for the simple geometry of normal incidence of
wave on the concave photonic barrier, using the results
of Section 4. The complex transmission function depends
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upon the reflection coefficient R−, which can be found for
these waves from the comparison of equations (25, 26) at
the interface z = 0, equation (27) being taken into ac-
count:

R− =

th(pη0)[1 + γ2

4 + n2
0N

2
−4 + n2

0N
2
−] − γn0N−

th(pη0)[1−γ2

4 −n2
0N

2−]+γn0N−+i[2n0N−−γth(pη0)]
.

(36)

Substitution of (36) into (25) brings the transmission func-
tion T− = |T−|exp(iϕ−)

|T−|= 2n0N−
ch (pη0)

{[
th (pη0)

(
1 − γ2/4−n2

0N
2
−
)

+ γn0N−
]2

+ [2n0N−−γth (pη0)]
2
}−1

2
(37)

ϕ− = arctg

[
th (pη0)

(
1 − γ2

/
4 − n2

0N
2
−
)

+ γn0N−
2n0N− − γth (pη0)

]
.

(38)
The “phase time” tp, calculated by means of (35) and (38),
is then

tp =
1
ω

cos2 ϕ−
2n0N− − γth (pη0)

[
th (pη0)

(
γ2

4
+ 2n2

0u
2

)

−
(

1 − γ2

4
− n2

0N
2
−

)
ln (y+/y−)
uN−ch2 (pη0)

−γn0N−

(
1 +

u2

N2−

)

+tgϕ−

(
2n0u

2

N−
− γth (pη0) − γ ln (y+/y−)

uN−ch2 (pη0)

)]
. (39)

The phase time (39) for λ = 800 nm (correspond-
ing to the profile used for Fig. 1c, for different thick-
nesses d) tp ≈ 0.4; supposing, for an estimation, the veloc-
ity vp to be constant vp = d/tp, one finds the subluminal
value vp = 0.65c.

To examine the phase shift produced by m similar ad-
jacent films one has to generalize the transmission func-
tion T (37, 38) for a set of m adjacent parallel layers, the
value m being arbitrary. Indeed this is the only practical
way of increasing the total thickness of our optical film
without changing its essential physical parameter, i.e. its
cut-off frequency. Using the continuity conditions on each
boundary between two adjacent layers, one can find the
field in each layer; attributing the number m = 1 for the
layer at the far side of the set, we will find a simple recur-
sive relation for parameter Qm+1 for the (m + 1)th layer
(m ≥ 1):

Qm+1 = exp[−2mpη0]Q0. (40)

The value Q0 is given in (27). Proceeding as above, we will
build a generalization of T− yielding the phase of trans-
mission function for m layers:

ϕ− = arctg
[
th(mpη0)(1 − γ2/4 − n2

0N
2
−) + γn0N−

2n0N− − γth(mpη0)

]
.

(41)

Fig. 2. Phase of the transmission function and phase time for
a stack of m films identical to that of Figure 1c.

A plot of the phase time and phase shifts as a function of
m is shown in Figure 2. The phase is growing when the
number of layers increases: thus, for m = 1 and m = 2
the values are 0.97 rad and 1.2 rad respectively. However,
this growth is decelerating with the increase of m: the
values for m = 5 and m = 8 are 1.46 rad and 1.47 rad
respectively. When the amount of layers is growing so that
mpη0 � 1, the phase becomes independent from m

limϕ− |m→∞ = arctg

[
1 − (n0N− − γ/2)2

2n0N− − γ

]
. (42)

Increasing m also leads to a drastic attenuation of the
power of the tunneling wave: the transmission func-
tion (27) yields the attenuation factor exp(−2mpη0).

Formula (42) describes the Hartman effect for pho-
tonic barriers formed by a stack of heterogeneous di-
electric layers (3). The dependence of phase shift upon
the barrier’s thickness being saturated, the phase time
tp can become superluminal; in our example the veloc-
ity vp = d/tp reaches the value c for the wave tunneling
through 10 films. The further increase of m leads to su-
perluminal values for vp > c. Herein the quantity vp can
reach an arbitrarily high value, and thus the problem of
physical interpretation of vp remains opened.

It is worthwhile to examine the phase saturation phe-
nomena in the reflected wave too. Presenting the reflection
coefficient R− (36) in a form R− = |R−| exp(iϕR) one can
find the phase

ϕR = arctg

[
γth (pη0) − 2n0N−

th (pη0)
[
1 − γ2/4 − n2

0N
2−
]
+ γn0N−

]
.

(43)
Comparison of the phases of transmitted (38) and re-
flected (43) waves brings the relation tgϕt tgϕR = −1;
thus, these phases and the corresponding phase times (35)
(tp)t and (tp)R are linked:

ϕt − ϕR =
π

2
, (tp)t = −(tp)R. (44)

Saturation of the phase of the reflected wave thus also
occurs, and it is not connected with the power attenuation;
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the power reflection coefficient |R−|2 in a case m � 1
tends to a natural limit |R−|2 → 1. This situation is close
to that investigated in reference [16].

Let us finally point out that the phase time can take
negative values. To illustrate this case, let us consider the
formula (39) for the saturated case — th(mpη0) → 1 —
in the form

tp =
2
ω

[
1 + (γ/2 − n0N−)2

]−2

×
{[

γ2

2
+ 2n2

0u
2 − γn0N−

(
1 +

u2

N2−

)]

× (γ/2 − n0N−) +
n0u

2

N−
− γ/2

}
. (45)

If the normalized frequency u obeys to the condition

γ

2
− n0N− = 1 (46)

the expression (45) for tp writes

tp =
1
2ω

(
1 − n0

N−

)
(47)

so that tp < 0, if the refractive index n0 is high enough:
n0 > N−. This condition can be fulfilled for the solutions
of equation (46).

u =

√
1 + y2

n0

(
−y +

√
1 + y2 + n2

0

)
. (48)

These solutions possess the property u ≥ 1, and thus
meet the tunneling condition. If the frequency of tun-
neling wave is only slightly smaller, then the cut-off fre-
quency (u − 1 � 1, N− � 1), then the phase time (47)
reaches large negative values. Thus, for the abovemen-
tioned film (d = 80 nm, y = 0.575, n0 = 1.8,
Ω1 = 2.76 × 1015 rad s−1), u = 1.001, and N− = 0.045.
These parameters bring the tunneling wave frequency
ω = 2.757 × 1015 rad s−1, and finally tp = −7 fs.

6 EM tunneling through lossy barriers
(violation of the Hartman effect)

This chapter is devoted to the phase effects for EM waves
tunneling through dissipative heterogeneous dielectrics,
described by complex values of the dielectric susceptibility
ε(z) = n2

0(1 + ig)2U2(z), where the spatial profile U(z) is
given in (3) and the absorption is determined by the fac-
tor g. The interplay of tunneling and absorption will af-
fect both reflected and transmitted waves. The reflection
coefficient can be found by the same procedure, and the
result can be presented using the following replacements

in equation (36), derived for the lossless dielectric:

N− → a1−ia2; a1,2 =

√
1
2

[√
(u2−1)2+g2 ± (u2−1)

]

p→ p1 − ip2; p1,2 =
ωn0

c
a1,2

th (pη0) =
t1
(
1 + t22

)− it2
(
1 − t21

)
1 + t21t

2
2

;

t1 = th (mp1η0) ; t2 = tg (mp2η0) (49)

m representing again the number of films in the stack.
Making these replacements, we find the reflection coeffi-
cient:
∣∣∣∣∣R− =

√
K2

1 +K2
2

b21 + b22

∣∣∣∣∣; ϕR = arctg
(
K2b1 −K1b2
K2b1 +K1b2

)

K1 = t1(1 + t22)(1 − γ2/4 + n2
0N

2
−) − t2gn

2
0(1 − t21)

− γgn0a1(1 + t21 + t22)

K2 = γgn0a1(1+t21+t
2
2)−t2(1−t21)(1+γ2/4+n2

0N
2
−)

− t1gn
2
0(1 + t22)

b1 = t2(1 − t21)(n
2
0g − γ) + n0(1 + t21t

2
2)(2a2 − γa1)

+ t1(1 + t22)(1 − γ2/4 − n2
0N

2
−)

b2 = t1gn
2
0(1 + t22) − γt1(1 + t22)

+ n0(1 + t21 + t22)(2a1 − γa2)

− t2(1 + t21)(1 − γ2/4 − n2
0N

2
−). (50)

When the amount of films is increasing, so that
th(mp1η0) → 1, the expressions for K1,2 and b1,2 simplify:

K1 = t1
(
1 + t22

)
α; α = 1 + γ2/

4 + n2
0
N2

− − γn0a1

K2 =
(
1 + t22

)
β; β = n0 (γa2 − gn0)

b1 =
(
1 + t22

)
χ; χ = 2 − α− 2n0a2

b2 =
(
1 + t22

)
δ; δ = 2n0a1 − γ − β (51)

and both amplitude and phase of reflected wave tend
monotonically to some constant values

|R−| =

√
α2 + β2

χ2 + δ2
; ϕR = arctg

(
βχ− αδ

βα+ χδ

)
. (52)

The same approach results in the generalization of trans-
mission function (37, 38) for the evanescent waves in a
lossy dielectric. Thus, in the “saturation” limit the ampli-
tude and phase of this function are:

|T−| =
2n0

√
a2
1 + a2

2

ch (mpη0)
√
χ2 + δ2

(53)

ϕt = arctg
(χ
δ

)
− arctg

(
a2 − a1t2
a1 + a2t2

)
. (54)
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Fig. 3. Phase of the transmission function for a stack of lossy
films with parameters identical to that of Figure 1c, and imag-
inary part of the refractive index g equal to 0.1 and 0.5.

Due to the increase of m the amplitude |T−| is damp-
ing monotonically, meanwhile the behaviour of phase ϕt

is more complicated: the relation (44) between phases
ϕt and ϕR is violated and, unlike in the lossless case,
the phase of transmitted wave is not saturated. Equa-
tion (54) indicates the oscillations of this phase between
the values (φt)+ and (φt)−

(ϕt)± = arctg
(χ
δ

)
± arctg

(
a1

a2

)
. (55)

Such ϕt oscillations are illustrated in Figure 3 for a stack of
80 nm films described above, between m = 5 and m = 20,
with g = 0.5 and g = 0.1. They arise for an evanescent
wave in a media with arbitrary small, but finite, values of
the absorption parameter g; thus, the monotonic satura-
tion of the phase of the transmitted wave can be attributed
only to the lossless limit g → 0. However, for small values
of g (see the case g = 0.1 in Fig. 3), the period of these os-
cillations is slowing down, and stacks with a small number
of films exhibit a monotonic behavior.

7 Conclusions

In this paper, we have studied the propagation of e.m.
fields in photonic barriers, formed by inhomogeneous di-
electric layers, both lossless and lossy, whose ε(z) profile
allows to derive exact analytical solution of the wave equa-
tion. The film properties are in such a case essentially de-
termined by the length scales (two in our case, allowing
a wide variety of film types) of the distribution of the di-
electric susceptibility, and exhibit a plasma- of waveguide-
like behavior, characterized by a length-scale dependent
critical frequency. Using different profile parameters, we
can investigate situations in which the field propagates
through the film, as well as the tunneling regime for which
the field in the film is presented by an evanescent wave.

The group velocity of the waves was shown to depend
upon the profile of ε(z) across the film, and essentially on

the convex or concave nature of the susceptibility profile.
They stay in all studied cases subluminal.

We also investigated the behavior of the “phase-time”
of films through which the field is tunneling, on the basis
of which the possibility of superluminal phase propaga-
tion was proposed earlier. Analyzing the case of a stack
of identical layers, we found that this phase time shows
a saturated behavior, reminiscent of the Hartman effect,
accompanied by a drastic attenuation of the tunneling in-
tensity. This situation happens to be a specific property
of lossless media.

The authors thank Prof. T. Arecchi for his interest into this
research. They also acknowledge the support of NATO grant
no. PST.CLG.980334.
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